

Software Engineering Excellence (NTAGL-305)[image:]

Duration: 10 days
Available in Python, C#, Java, C++, or JavaScript
Description[image: A diagram of a code

Description automatically generated]
This intensive hands-on course will teach you how to integrate Agile Intensive hands-on course focusing on integrating Agile Development, Test Driven Development (TDD), Object Oriented Principles and Practices, Design Patterns, and Lightweight Design. There’s a strong emphasis on leveraging best practices to improve software craftsmanship and deliver highly valuable software.
The course includes:
· Teams of 2-3 developers engage in a Socratic learning approach, practicing Agile principles by collaboratively building a single working software piece over a 10-day period.
· Like real-world scenarios, teams are not provided with all requirements upfront and are not given step-by-step instructions, fostering adaptability and problem-solving skills.

· Teams are expected to consistently deliver quality code, with typical iterations lasting only 20 minutes.
· "Do The Code Right" approach is emphasized, reminding teams to Design-Test (first!)-Code-Refactor every 20-30 minutes, promoting a cycle of continuous improvement and adherence to best practices.
Objectives
· Apply Agile principles in team projects to deliver high-quality, valuable software iteratively
· Implement Test-Driven Development (TDD) to ensure code quality and maintainability
· Demonstrate understanding of Object Oriented Principles and Practices in software design
· Utilize Design Patterns to solve common design problems efficiently
· Apply Lightweight Design principles to create flexible, maintainable software solutions.
Prerequisites
· Six months or more of programming experience in an object-oriented language
Outline
· Module 1: Introduction to TDD
· Purpose and benefits of TDD
· Motivation behind TDD: why it's crucial in modern software development
· Overview of the TDD cycle: Red-Green-Refactor

· Module 2: Test Driven Development (TDD)
· Principles and Techniques
· TDD Metaphors
· Benefits, Challenges and Limitations
· Handling Requirements Change
· Characteristics of good tests
· Revisit Anti Patterns

· Module 3: Testable Designs (Mocks, Fakes and Stubs)
· Creating testable Code, If you cannot test it what use is it?
· Strategies for Testable Code
· Test Unfriendly features
· Interfaces are great!
· Stubs, Fakes and Mocks
· Mocks as Collaborators
· Mocks and return values, void methods, frequency calls and ordering

· Module 4: OO Building Blocks
· Classes and Objects
· Operations and Methods
· Instantiation of Objects
· Inheritance
· Overloading
· Overriding
· Interfaces
· Abstract Classes

· Module 5: Encapsulation
· Data Hiding
· Type Hiding
· Polymorphism
· Associations
· Dependency and Delegation
· Aggregation and Composition
· Coupling
· Cohesion
· Redundancy
· SOLID & DRY

· Module 6: Lightweight Design
· First Principles
· When to Design in Agile
· User Stories
· Class Diagrams
· Review Checks

· Module 7: Commonality and Variance
· Techniques for Translating from Requirements
· Fundamentals of Commonality/Variability Analysis (CVA)
· CRC Cards
· How to Handle Variations as We Get New Requirements
· Understanding and Using Factories

· Module 8: Complete Code
· Doing the Simplest Thing Possible
· Testable
· Proper Encapsulation
· Strong Cohesion
· Correct Coupling
· Readability

· Module 9: Delegation
· Delegation and Why it is so Powerful
· How Various Design Patterns Leverage Delegation
· Adapter Pattern
· Strategy Pattern

· Module 10: Refactoring
· What is Refactoring
· Why Refactor
· Handling API Changes
· Identifying Code Smells
· Refactoring and Testing

· Module 11: Using Abstraction
· Understanding the Template Method Pattern
· Importance of Depending on Abstraction
· Serializing Objects to XML

· Module 12: Delegation
· Delegation and Why it is so Powerful
· How Various Design Patterns Leverage Delegation
· Adapter Pattern
· Strategy Pattern

· Module 13: MVC and MVVM
· Components and Responsibilities of Each Architecture
· Benefits and Drawbacks of Each Architecture

· Module 14: Managing Access
· The Proxy Pattern
· Lazy Instantiation
· Cross-cutting Concerns

· Module 15: Dynamic Responsibilities
· Adding Flexible Functionality
· The Decorator Pattern
· The Observer Pattern
· Writing a Custom Decorator

© nTier Training 2016
 www.nTierTraining.com | 866-526-3921
image1.png

image5.png

image3.png

image4.png

image2.png
IIIIIIII

